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At first glance, the primary system that the blacksmith uses to 
shape metal, the hammer and the anvil, seem to be simple and not 
demanding of deep analysis.  The anvil is an immovable, non-deformable object, and the hammer 
squashes the target with the force of its blow.  If it is necessary to do more work or larger jobs, just use a 
bigger hammer and/or swing it faster.  But, should the anvil be correspondingly larger?  That seems to 
make sense, since the anvil could no longer be considered immovable if the hammer were large enough.  
In fact, the anvil might even be damaged.  How big is efficient (or efficient enough), and how big is safe 
(or safe enough)?  Do other factors (anvil shape or mounting, for example) influence the process in 
important ways?  It is intuitive that they do, and application of physical insight to this problem can tell not 
only the qualitative answers to these questions, but also provide quantitative estimates, so we can 
calculate, for example, what hammer anvil mass ratio is necessary to obtain at least a 95% forging 
efficiency.

The behavior of objects when they collide is governed by the principles of conservation of momentum 
and energy.  The latter applies for elastic collisions, for which kinetic energy is fully returned to the 
masses after collision.  Conservation of momentum applies in both elastic and inelastic (where some of 
the collision energy is converted to heat or deformation) collisions.  This principle may be codified in the 
following equation:

m1V1 + m2V2 = m1v1 + m2v2       (1)

The masses involved in the collision are m1 and m2, and the initial and final velocities are V1, V2, v1, and 
v2, respectively.  The subscripts 1 and 2 refer to the two bodies which for our purposes may be considered 
to be the hammer and the anvil.  Note that there is only one equation in the two unknowns, v1, and v2.  
Therefore, another condition is required to fully determine the system.  The degree of freedom will be, 
following Newton, embodied in the coefficient of restitution as e, the ratio between the relative speed 
after and before impact.  In other words:

e(V1 - V2) = V2 - V1        (2)

For elastic collisions in which no energy is lost, this corresponds to the familiar situation of a moving 
marble striking a stationary one of equal mass.  Here, e = 1, m1 = m2, and V2 = 0, which Equations (1) and 
(2) lead to v2 = V1 and v1 = 0.  In other words, after the collision m2 moves off at m1's initial velocity, and 
m1 stops dead.  Since the anvil is free to mover after being struck by the hammer, the system corresponds 
to a freely suspended anvil, rather than one affixed to a stump.  Due to this idealization, the results of the 
calculation would be expected to be pessimistic.  In other words, they would provide an upper bound on 
energy loss, or conversely, a lower bound on efficiency.  This is still very useful to us, since it gives a 
worst case loss for a poorly attached anvil.  Calculation of a value which accounts for the attachment to a 
secondary object, such as a stump, will require more powerful mathematical techniques, and is left to a 
future article.
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From these equations, we can derive two different measures of hammer-anvil system efficiency.  The first 
of these is the oft-quoted rebound height.  The use of this measure corresponds to an elastic collision 
(assuming no loss of energy) in which the final rebound height as a fraction of the initial hammer height 
is the quantity of interest.  In order to write an expression for this quantity, the equation of conservation of 
energy applies, since the collision is assumed to be lossless.

(1/2) m1V12 = (1/2)m1v12 + (1/2)m2v22      (3)

where v2 = 0 because the anvil is initially at rest.  Combining this with Equation (1) gives:

v1 = -V1 [ 1 - 2m1/(m1 + m2)]        (4)

Or, in terms of energy,

(1/2)m1v12 = (1/2)m1V12{1-2m1/(m1 + m2)]     (5)

and the efficiency, which is the ratio of final to initial energy, or height, since height and gravitational 
potential energy are proportional may be written

ϵ1 = [1 - 2m1/(m1 + m2)]2       (6)

This quantity, ϵ1, represents the fraction of the rebound height to the initial height of a dropped hammer.  
For very small values of hammer to anvil mass ratios, this may be approximated according to a truncated 
Taylor series as

ϵ1 = 1 - 4α         (7)

where  α is  m1/m2, the hammer-anvil mass ratio.  The concept of Taylor series approximation is covered 
in any elementary calculus text where more details may be found, if needed.  In this case, if the hammer 
weighs 2 lb and the anvil weighs 100 lb, ϵ1  = 92%.  Note that as long as the anvil mass is not infinite, its 
subsequent motion, albeit tiny, will steal a bit of rebound height and the efficiency will always be less 
than unity.  In other words, the hammer will always rebound to a slightly lower height than it was dropped 
from.  This efficiency relates to the familiar ball bearing test in which the decrease in rebound height from 
dropped height is measured.  In practice, this test is not solely affected by the hammer-anvil mass ratio, 
since the assumption of conservation of energy is not quite accurate.  Softer steel anvil faces deform 
slightly upon impact, absorbing more energy than calculated from Equation 6.  Thus, the hardness of the 
anvil surface also affects the rebound height.  Rather than complicating the interpretation of energy loss, 
this test provides a simultaneous, although convoluted, measurement of both the effect of anvil mass and 
surface hardness on the energy returned to the hammer.

An alternative measure of anvil-hammer efficiency corresponds to the case in which e = 0, that is for a 
purely inelastic collision.  In this case, the hammer sticks to the target, and v1, = v2, so Equation (1) may 
be rewritten as

m1V1 = (m1 + m2)v1        (8)
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Efficiency is now the energy deposited (lost) into the target.  All movement after the collision  (movement  
of the hammer+target+anvil together)  represents energy which is not used for forging.  The fractional 
efficiency is now written as

 ϵ0 = (Ei - Ef) / Ei         (9)

where Ei and Ef are the initial and final energy respectively.

Ef = (1/2) (m1 + m2)v12 = (1/2) (m1 + m2) [m1V1/(m1 + m2)]2    (10)

after eliminating v1 by using Equation (9).  Substituting Equation (10) into Equation (9) gives

ϵ0 = 1 - m1/(m1 + m2) ~ 1 - α        (11)

This is a much more optimistic formula than the one for ϵ1.  In the earlier example of a 2 lb hammer and 
a 100 lb anvil,  ϵ0 is 98%, versus 92% for ϵ1.

So, which is the more appropriate formula? Blacksmithing processes are somewhat in between full 
rebounding and full sticking on impact.   Most industrial hot forging practices take place at values of e 
which are quite small, about 0.1 to 0.2 (see Reference 1), and it would seem that ϵ0 is more indicative of 
forging efficiency.  In a blacksmith's practice, the goal is to move metal, not to make noise and have the 
hammer rebound high.  Therefore, if the purpose of the process is to deform hot metal, the low restitution 
coefficient for ϵ0 is the more appropriate one.

This conclusion is actually further reaching than one might expect from simply comparing the formulas 
and the relative magnitudes of their results.  Closer examination of the applicability of each shows that 
ϵ1, corresponding to the rebound test, is more heavily influenced by the hardness of the anvil.  As will be 
seen in the following section, hardened anvil tops have yield stresses similar to the maximum stress 
imposed by ball bearing or direct hammer strikes.  Thus, this test is more indicative of the hardness of the 
hammer and anvil faces than it is is for their suitability for hot forging.  This can be readily illustrated by 
considering the application of the ball bearing test to a sledge hammer face and a large block of mild steel 
or a vertically oriented section of railroad rail.  The sledge hammer face will always score higher on the 
rebound test, but makes an inferior anvil compared to the above two alternatives.  Provided that the anvil 
is not getting damaged, the dissipation based ϵ0 provides a more direct indication of energy deposited in 
the target than does the rebound based .  As Brian Brazeal so succinctly stated when demonstrating his 
very effective Easy Smith mild steel block anvil, “Rebound should matter, but it doesn't.” (Reference 2)
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